Linear Estimate of the Number of Zeros of Abelian Integrals for a Kind of Quartic Hamiltonians*

نویسندگان

  • Yulin Zhao
  • Zhifen Zhang
چکیده

where f (x, y) and g(x, y) are real polynomials of x and y with degree not greater than n, 1h is an oval lying on real algebraic curve H(x, y)=h, deg H(x, y)=m (H(x, y) are called Hamiltonians), and 7 is a maximal interval of existence of 1h . This question is called the weakened Hilbert 16th problem, posed by V.I. Arnold in [1, 2]. The general result of solving the weakened Hilbert 16th problem was achieved by A.Varchenko [12] and A. Khovanskii [6], who proved independently the existence of Z(m, n), but no explicit expression of Z(m, n) has been obtained. Yu. Ilyashenko, S. Yakovenko and D. Novikov have proved in [4, 5, 7, 13] that for the set of ``good'' H(x, y) there exists a Article ID jdeq.1998.3581, available online at http: www.idealibrary.com on

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LINEAR ESTIMATE OF THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A KIND OF QUINTIC HAMILTONIANS

We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.

متن کامل

Linear Estimate of the Number of Zeros of Abelian Integrals for a Kind of Quintic Hamiltonians

We consider the number of zeros of the integral I(h) = ∮ Γh ω of real polynomial form ω of degree not greater than n over a family of vanishing cycles on curves Γh : y 2 + 3x − x = h, where the integral is considered as a function of the parameter h. We prove that the number of zeros of I(h), for 0 < h < 2, is bounded above by 2[n−1 2 ] + 1.

متن کامل

Simple Exponential Estimate for the Number of Real Zeros of Complete Abelian Integrals

One of the main results of this paper is an upper bound for the total number of real isolated zeros of complete Abelian integrals, exponential in the degree of the form (Theorem 1 below). This result improves a previously obtained in [IY1] double exponential estimate for the number of real isolated zeros on a positive distance from the singular locus. In fact, the theorem on zeros of Abelian in...

متن کامل

An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system

In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...

متن کامل

Bounded Decomposition in the Brieskorn Lattice and Pfaffian Picard–fuchs Systems for Abelian Integrals

We suggest an algorithm for derivation of the Picard–Fuchs system of Pfaffian equations for Abelian integrals corresponding to semiquasihomogeneous Hamiltonians. It is based on an effective decomposition of polynomial forms in the Brieskorn lattice. The construction allows for an explicit upper bound on the norms of the polynomial coefficients, an important ingredient in studying zeros of these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999